Abstract

Immobilization of Au nanoparticles on super-paramagnetic iron-oxide (SPIO) enables facile and biocompatible surface functionalization via Au–S bond. Au/SPIO composite nanoparticle is easily modified by thiol-modified polyethylene glycol (PEG-SH), and they are successfully applied on MR tumor imaging. However, its large hydrodynamic size (~150 nm) still causes the accumulation to liver in vivo. In this study, we controlled the hydrodynamic size of Au/SPIO by testing different raw SPIOs and stabilizing polymers. As the best candidate, Au/Molday-ION which was synthesized from Molday-ION and polyvinyl alcohol comprised the hydrodynamic size of 56 nm. Moreover, PEGylated Au/Molday-ION showed excellent dispersibility in blood serum, with the hydrodynamic size of 65 nm. This surface functionalization strategy is effective for the constructions of magnetic nanocarriers for in vivo applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.