Abstract

Chitosan-N-lauroyl (CL) was synthesized from the reaction between chitosan and lauroyl chloride, in two proportions, obtaining the adsorbents CL1P (1:1) and CL2P (2:1). These were used for studies in aqueous Cu(II) and Pb(II) solutions on the metal ion adsorption capacity and the metal/adsorbent interaction. The pH, temperature, kinetics, selectivity and adsorption equilibrium were investigated. The feasibility of complexation between the ions and the adsorbent was verified theoretically through a density functional theory (DFT) approach. The theoretical maximum adsorption capacities (qmax) of CL1P and CL2P for Cu(II)/Pb(II) ions were 36.4/41.0 and 48.5/37.6 mg g−1, respectively. The experimental qmax values were lower than the theoretical values and ranged from 31.5–33.0 mg g−1. At the optimum pH value (5.5) the ion adsorption process was spontaneous, endothermic and associated with pseudo-second-order kinetics. Supported by quantum mechanical calculations, the site of ion-chitosan interaction was identified, evidencing the role of carbonyl, hydroxyl and amide groups in the stabilization of the complexes. Considering the scarcity of studies on apolar chitosan-based adsorbents for the removal of heavy metals, the promising results presented herein allow a better understanding of the relation between apolar groups and pH control, which could aid the design of polymeric adsorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.