Abstract

Collision and security issues are considered as barriers to RFID applications. In this paper, a parallelizable anti-collision based on chaotic sequence combined dynamic frame slotted aloha to build a high-effciency RFID system is proposed. In the tags parallelizable identification, we design a Discrete Markov process to analyze the success identification rate. Then a mutual authentication security protocol merging chaotic anti-collision is presented. The theoretical analysis and simulation results show that the proposed identifcation scheme has less than 45.1 % of the identifcation time slots compared with the OVSF-system when the length of the chaos sequence is 31. The success identification rate of the proposed chaotic anti-collision can achieve 63% when the number of the tag is 100. We test the energy consumption of the presented authentication protocol, which can simultaneously solve the anti-collision and security of the UHF RFID system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.