Abstract
Genetic Algorithm (GA) and Singular Value Decomposition (SVD) are deployed for optimal design of both the Gaussian membership functions of antecedents and the vector of linear coefficients of consequents, respectively, of ANFIS networks. These networks are used for stiffness modelling and prediction of rubber engine mounts. The aim of such modelling is to show how the stiffness of an engine mount changes with variations in geometric parameters. It is demonstrated that SVD can be optimally used to find the vector of linear coefficients of conclusion parts using ANFIS (Adaptive Neuro-Fuzzy Inference Systems) models. In addition, the Gaussian membership functions in premise parts can be determined using a GA. In this study, the stiffness training data of 36 different bush type engine mounts were obtained using the finite element analysis (FEA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.