Abstract

To find an optimum design of a new high-dose rate ytterbium (Yb)-169 brachytherapy source that would maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT), while meeting practical constraints for manufacturing a clinically relevant brachytherapy source. Four different Yb-169 source designs were considered in this investigation. The first three source models had a single encapsulation made of one of the following materials: aluminum, titanium, and stainless steel. The last source model adopted a dual encapsulation design with an inner aluminum capsule surrounding the Yb-core and an outer titanium capsule. Monte Carlo (MC) simulations using the Monte Carlo N-Particle code version 5 (MCNP5) were conducted initially to investigate the spectral changes caused by these four source designs and the associated variations in macroscopic dose enhancement across the tumor loaded with gold nanoparticles (GNPs) at 0.7% by weight. Subsequent MC simulations were performed using the EGSnrc and norec codes to determine the secondary electron spectra and microscopic dose enhancement as a result of irradiating the GNP-loaded tumor with the mcnp-calculated source spectra. Effects of the source filter design were apparent in the current MC results. The intensity-weighted average energy of the Yb-169 source varied from 108.9 to 122.9 keV, as the source encapsulation material changed from aluminum to stainless steel. Accordingly, the macroscopic dose enhancement calculated at 1 cm away from the source changed from 51.0% to 45.3%. The sources encapsulated by titanium and aluminum/titanium combination showed similar levels of dose enhancement, 49.3% at 1 cm, and average energies of 113.0 and 112.3 keV, respectively. While the secondary electron spectra due to the investigated source designs appeared to look similar in general, some differences were noted especially in the low energy region (<50 keV) of the spectra suggesting the dependence of the photoelectron yield on the atomic number of source filter material, consistent with the macroscopic dose enhancement results. A similar trend was also shown in the so-called microscopic dose enhancement factor, for example, resulting in the maximum values of 138 and 119 for the titanium- and the stainless steel-encapsulated Yb-169 sources, respectively. The current results consistently show that the dose enhancement achievable from the Yb-169 source is closely related with the atomic number (Z) of source encapsulation material. While the observed range of improvement in the dose enhancement may be considered moderate after factoring all uncertainties in the MC results, the current study provides a reasonable support for the encapsulation of the Yb-core with lower-Z materials than stainless steel, for GNRT applications. Overall, the titanium capsule design can be favored over the aluminum or dual aluminum/titanium capsule designs, due to its superior structural integrity and improved safety during manufacturing and clinical use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.