Abstract
The last decade has established the underwater glider as an important platform for oceanographic research. To further the capabilities of glider research three Florida Institute of Technology students have been actively designing a glider that is considerable cheaper than commercial gliders. This vehicle introduces external wing control surfaces for steering and a mechanical buoyancy engine. The aim of the work in progress is to develop a fully functional underwater glider as a platform for oceanographic research and design of underwater navigation and control algorithms. This goal is to be reached through a complete redesign and unification of the previous control components of both systems and the implementation of device driver libraries. Mechanical components such as the buoyancy engine have been reviewed and field tested off the Atlantic coast of Florida during the summer of 2012. Designed for a maximum depth of 100m the glider's payload bays will enable the usage of various instruments in the coastal shelf region. The low weight (less than 25 kg) and small size (2m in length) allows deployments from small boats. GPS navigation, radio frequency and satellite communication (when surfaced) will make the glider an excellent vehicle for student research. Completion is expected for December 2012.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.