Abstract

In the present report, a photonic crystal based micro-ring resonator (MRR) structure is proposed which is very compact in size and has very fast response and is employed for temperature sensing purpose. Temperature sensing application for both the single MRR and cascaded MRR is illustrated in this paper. The sensitivity of the reported structure is increased from 2.9 nm/°C to 3.4 nm/°C by cascading two MRR. The refractive index of the material is subjected to change with the variation in temperature which results in the shift of the resonant wavelength of the proposed sensor. The finite difference time domain (FDTD) simulation is utilized to see the transmission spectrum of the proposed structure and analyzing the shift in the resonance wavelength the temperature is calculated. The proposed design is simple, reliable and may be integrated into different transducer and sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.