Abstract

ABSTRACTIn order to verify the feasibility and effectiveness of the sensor used in complex concrete materials, an innovative application of ultrasonic phased array detection for a concrete structure was investigated. Comparing with the traditional piezoelectric composites, orthotropic piezoelectric composite material (OPCM) can be used as transducers in damage detection show clear advantages because of their high sensitivity and directivity along the polarization direction. A low frequency ultrasonic phased array transducer consisting of 16 OPCM elements is studied. The optimal array parameters, such as the phased array element interval, the array element width, and number of elements, are obtained by studying the total displacement changes as various parameters change at the focus point in the concrete structure. This configuration allowed the variation and control of the wave field directivity in the concrete structure during the measurements. The measurements were taken on concrete specimens using a precise time-delay device. The experimental measurements were compared to theoretical calculations to investigate the influence of different array element parameters. The results show that an OPCM phased array transducer can be used to detect damage in a concrete block.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.