Abstract

The design of an optimal current controller for a permanent magnet synchronous motor is presented. Robust and simple current controllers that do not require the use of an added lagging compensator, are designed using the inverse linear quadratic (ILQ) design method. The ILQ design method is a strategy to find the optimal gains that is based on pole assignment without having to solve Riccati's equation. The basic ILQ technique is improved by the addition of an analytical equation that guarantees the optimality of the solutions. The optimum gains that minimise the settling time for step responses of the motor currents with no overshoot are obtained. The proposed procedure can be applied to any system with a single input and a single output and extends the conventional ILQ design method allowing its use in new areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.