Abstract

Improving rollover and stability of the vehicles is the indispensable part of automotive research to prevent vehicle rollover and crashes. The main objective of this work is to develop active control mechanism based on fuzzy logic controller (FLC) and linear quadratic regulator (LQR) for improving vehicle path following, roll and handling performances simultaneously. 3-DOF vehicle model including yaw rate, lateral velocity (lateral dynamic) and roll angle (roll dynamic) were developed. The controller produces optimal moment to increase stability and roll margin of vehicle by receiving the steering angle as an input and vehicle variables as a feedback signal. The effectiveness of proposed controller and vehicle model were evaluated during fishhook and single lane-change maneuvers. Simulation results demonstrate that in both cases (FLC and LQR controllers) by reducing roll angle, lateral acceleration and side slip angles remain under 0.6g and 4° during maneuver, which ensures vehicle stability and handling properties. Finally, the sensitivity and robustness analysis of developed controller for varying longitudinal speeds were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.