Abstract

Plasmonic nano-structured array sensors have been highlighted by their tremendously promising applications, such as the surface plasmon resonance (SPR) optical biosensors. In this paper, within the visible spectrum region, the optical transmission properties of a metallic thin film deposited over dielectric films of various refraction indices are investigated. With finite difference time domain (FDTD) method, we investigate the optical transmission spectra of such plasmonic structures based on both nano-holes and nano-disc arrays. This investigation includes monitoring the modification in both the transmission resonance wavelengths and peak transmittance. The results of this study provide a better understanding of the interaction between light and plasmonic nano-hole and nano-disc arrays. It shows that the changing the shapes of the nano-holes can affect the resonance wavelengths and the intensity of transmitted spectra and alter its resonance peak transmittance values. We found that the interaction coupling between the localized plasmons (LSP) and the propagating surface plasmons (PSP) can be tuned to boost the performance of the optical sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.