Abstract

A magnet system comprising a pair of self-supporting disk-shaped coils has been designed for the ASTROMAG facility on the space station Freedom. The coils are connected in a quadrupole configuration in order to eliminate their dipole moment. One of the primary requirements of this design is that the magnet coils must have near-perfect structural integrity. To this end, each coil would be manufactured as a monolithic composite in which the superconducting wire is incorporated as one of the components. By utilizing a precision X-Y numerically controlled wiring machine, the coil can be built up in pancake layers by alternating prepreg sheets of fiber/epoxy (e.g. carbon or Kevlar fiber) with a layer of NbTi wire that spirals from OD to ID in one layer, from ID to OD in the next. and so on. Each disk magnet will have an ID of 0.4 m and an OD of 1.7 m. The peak field at the winding will be 7.2 T. The system is to operate at 1.8 K. and I/sub op//I/sub c/=0.5. Results of magnetic field and force calculations are presented, and the structural characteristics of the system are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.