Abstract

Erbium-doped waveguide amplifiers are important for silicon photonic large-scale integration. They boost the optical signal to compensate for the on-chip loss of the whole system, such as insertion, transmission, and coupling loss. Herein, a GaAs-on-silicon-pumped erbium-based waveguide amplifier is proposed. The optical amplifier is based on waveguides evanescently coupled with an erbium-doped thin-film gain medium. The erbium-doped gain region is locally pumped by a hybrid GaAs-SiN/SiO vertical-cavity-emitting pump laser. It can be selectively fabricated on the silicon photonic chip that has good position flexibility when integrated with other devices. The amplifier provides high-quality electrically driven amplification and realizes the full integration of amplifiers with the silicon photonic system without any external pump light source. The modeling analyses show that the proposed amplifier design has a maximum saturated gain of 42.5 dB/cm with a modulation bandwidth of ∼42 GHz. This high-gain, large-bandwidth device fully utilizes the advantages of erbium-doped materials and silicon-based III-V semiconductors, while overcoming their issues, and opens up a new pathway for on-chip amplification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call