Abstract

The very high annual heat demand of greenhouses is the most critical factor that increases production costs. Conventional methods are generally used to obtain the optimum temperature required for greenhouses. In these systems, greenhouse air is heated by a boiler and pipe networks are connected to it, and in this way, most of the heat energy is transferred from the greenhouse ceiling to the atmosphere. In addition, in the greenhouse, not only the air but also the soil should be heated in order not to spoil the roots of the plants. The objective of this research is to provide sustainable heating for greenhouse applications. For this purpose, an innovative heating system has been designed for greenhouse heating by using of solar energy and heat pump technologies. In this study, a new approach was presented by designing a novelty heat pump flow for the heat required in the greenhouse. With this design, not only greenhouse air but also the soil will be heated and the best conditions for the development of plants will be provided. In the system, an ethylene glycol water mixture was used to prevent damage caused by freezing. In addition, it is designed to provide sustainability with an auxiliary heater when solar radiation is insufficient. It is highly recommended to apply this presented system for all greenhouse types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.