Abstract

Abstract The Moisture Separator Reheater (MSR) is a key component of Nuclear Power Plants (NPP), both in terms of performance and prevention of erosion/corrosion. Wet steam is usually dried in a MSR by inertial separation of the liquid water using separator elements. Depending on the design of the MSR, the technology of the separator elements contributes significantly to its size and performance. An innovative concept of separator panels was conceived by means of aerodynamic principles as outlined in part 1 of this paper [1]. Computational Fluid Dynamics (CFD) has been used to understand the working principles of various moisture separating devices. The investigated separator panels are designed to capture the water droplets in a region of flow separation (invisible pockets) within the separator channels. To characterize the separation performance of these separator panels, a test rig has been developed and built at the University of Applied Sciences Northwestern Switzerland (FHNW). This test rig was then operated at typical MSR operating conditions. To meet the required moisture content and flow conditions, preheated water was injected into the saturated steam flow. In order to measure the residual moisture content after the separation the throttling calorimeter methodology has been adopted. The newly designed panels have shown very good separation performance. According to the measurements carried out, a residual moisture content of less than 0.1 % can be guaranteed. The innovative technology, which clearly differentiates the OEM, for who this research was carried out, from its competitors, will allow considerable size and cost reduction as well as opportunities to retrofit existing MSRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.