Abstract

In many conventional atomic force microscopes (AFMs), one of the key hurdles to high-speed scanning in constant-force contact mode is the low-feedback control bandwidth of the -axis loop. This paper presents the design of a fast -nanoposi-tioner to overcome this limitation. The -nanopositioner has its first resonant mode at 60 kHz and a travel range of 5 m. It consists of a piezoelectric stack actuator and a diaphragm flexure. The flexure serves as a linear spring to preload the actuator and to prevent it from getting damaged during high-speed operations. The -nanopositioner is mounted to an XY-nanopositioner. To avoid exciting the resonance of the XY -nanopositioner, an inertial counterbalance configuration was incorporated in the design of the -nanopositioner. With this configuration, the resonances of the XY-nanopositioner were not triggered. A closed-loop vertical control bandwidth of 6.5 kHz is achieved. High-speed constant-force contact-mode images were recorded at a resolution of 200 200 pixels at 10, 100, and 200 Hz line rates without noticeable image artifacts due to insufficient control bandwidth and vibrations. Images were also recorded at 312- and 400-Hz line rates. These images do not show significant artifacts. These line rates are much higher than the closed-loop bandwidth of a conventional AFM in which this nanopositioner was tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.