Abstract

Optical functional imaging methods such as calcium imaging have become a powerful tool for investigating neural activity in-vivo. Here, we present a design for a titanium implantable chamber with transparent silicone artificial dura which enables two-photon calcium imaging in non-human primates. This chamber accommodates imaging with high numerical aperture multiphoton objective lenses, and remains sealed, protecting the brain from the surrounding environment. In addition, we describe a tunable tissue stabilization system to apply gentle mechanical pressure to stabilize tissue during imaging. Our results suggest that two-photon calcium imaging may soon facilitate a new class of circuit and systems neuroscience experiments in non-human primates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call