Abstract
The importance of brain-computer interfaces (BCI) is increasing, and various methods have been developed. Among the developed BCI methods, functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) are favored due to their non-invasive feature and compact device sizes. EEG monitors the electrical potentials generated by the activation of neurons, and fNIRS monitors the blood flow also generated by neurons, resulting in signals with different properties between the two methods. As the two BCI methods greatly differ in the characteristics of the acquired neural activity signals, for cases of estimating the intention or thought of a subject by BCI, it has been proven that further accurate information may be extracted by utilizing both methods simultaneously. Both systems are powered by electricity, and as EEG systems are greatly sensitive to electrical noises, application of two separate fNIRS and EEG systems together may result in electrical interference as the systems are required to be in contact with the skin and stray currents from the fNIRS system may flow along the surface of the skin into the EEG system. This research proposes a wearable fNIRS-EEG hybrid BCI system, where a single terminal is capable of operating both as a continuous wave fNIRS emitter and as a detector, and also as an EEG electrode. The system has been designed such that the fNIRS and EEG components are electrically separated to avoid electrical interference between each other. It is expected that by utilizing the developed fNIRS-EEG hybrid terminals, the development of BCI analysis may be further accelerated in various fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.