Abstract
An ultrafast streaked extreme-ultraviolet (XUV) spectrometer (5-20 nm) was developed to measure the temperature dynamics in rapidly heated samples. Rapid heating makes it possible to create exotic states of matter that can be probed during their inertial confinement time-tens of picoseconds in the case of micron-sized targets. In contrast to other forms of pyrometry, where the temperature is inferred from bulk x-ray emission, XUV emission is restricted to the sample surface, allowing for a temperature measurement at the material-vacuum interface. The surface-temperature measurement constrains models for the release of high-energy-density material. Coupling the XUV spectrometer to an ultrafast (<2-ps) streak camera provided picosecond-time scale evolution of the surface-layer emission. Two high-throughput XUV spectrometers were designed to simultaneously measure the time-resolved and absolute XUV emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.