Abstract

Heat transfer through a 1 mm gap between two concentric cylinders representing the gap between a fuel support basket and a canister is experimentally and numerically investigated. The objective of this work is to study rarefied gas heat transfer in a simple geometry, and to measure the thermal accommodation coefficient at the interface between stainless steel and rarefied helium. The thermal accommodation coefficient is used to characterize the interaction between gas molecules and wall at the molecular level. It is important to determine its value with precision for better determination of heat transfer at low pressure. The experimental procedure consists of measuring the temperature difference between the inner and outer cylinders as the pressure is decreased in the gap. By knowing the heat flux across the gap the thermal accommodation coefficient can be extracted from the theoretical expression relating the temperature difference to the radial heat flux. Three-dimensional simulations using the ANSYS/Fluent commercial code are conducted to assess on the design of the experimental apparatus. These simulations confirmed that the apparatus design is effective to study the heat transfer across rarefied gas and to determine the thermal accommodation coefficient for helium on stainless steel surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.