Abstract
We have set-up an electrochemical advanced oxidation process for ethidium bromide (1), based on the Eu-doped MnWO4 (Eu:MnWO4), obtained through a template-driven synthesis, along with developing a suitable monitoring method. Under galvanostatic conditions, Eu:MnWO4-coated graphite electrode serves as anode, applicable for removal of 1. To go further and augment the catalytic method, we have applied a modified carbon paste electrode for the monitoring of 1 with the limit of detection (LOD) of 54 nM. Enhancement of the hydrogen evolution reaction is an indication of electrocatalytic properties of the material, whereby developed method emerges as a candidate for straightforward application in electrochemical advanced oxidation processes (EAOPs). We have enriched experimental data with theoretical insights, provided by Density Functional Theory (DFT), and proposed oxidation mechanism of 1. Based on obtained results, we propose the new nanomaterial as a potent electrochemical modifier, suitable for catalytic treatment and process monitoring of the 1-polluted waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.