Abstract
The traditional air-assisted side-deep fertilization device has some problems, such as inaccurate control system parameters and poor precision in variable fertilization. It seriously affects the application and popularization of the device. Aiming at the above problems, this paper wanted to realize the precise fertilizer discharge control of an air-assisted side-deep fertilization device. This paper designs an electronically controlled fertilization system based on a PID controller from the past. The system model was constructed in MATLAB, and the mathematical model and transfer function model of a stepper motor, the mathematical model of fertilizer discharge, and the stepper motor rotational speed were established too. In order to improve the accuracy of precise fertilizer discharge control system parameters, the system parameters were optimized based on the particle swarm optimization algorithm and the control system tuner toolbox. We had established a validation test platform to test the performance of a precise fertilizer discharge control system. In the actual experiment, the maximum stability coefficient of variation was 0.91% at the target fertilizer discharge mass level of 350 g/min, and the maximum error of fertilizer discharge was 4.14% at 550 g/min of the target fertilizer discharge mass level. By analyzing the test results of the precise fertilizer discharge control system, the new precise fertilizer discharge control system had good fertilizer discharge stability and could also meet the technical specification for quality evaluation of fertilization machinery (NY/T 1003-2006). This research can improve the fertilizer discharge accuracy of the air-assisted side-deep fertilization control system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.