Abstract

Xanthine oxidase (XO) was successfully immobilized by covalent attachment on poly(glycidyl methacrylate-co-vinylferrocene) (P(GMA-co-VFc)), a redox copolymer containing pendant epoxy and ferrocene moieties, for the evaluation of both the biosensing properties and the effect of the interaction of ketoconazole (Ktc) with the immobilized XO. The binding interaction between Ktc, a drug used to treat fungal infections, and the immobilized XO on P(GMA-co-VFc) was also studied by fluorescence spectroscopy technique. The binding capacity of the drug was determined using a calibration curve equation that was drawn at excitation wavelength of 300nm using fluorescence spectroscopy. The interaction ability was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and native-PAGE analysis. The enzyme electrode exhibited a linear range from 2.7×10−3 to 0.55mM with a sensitivity of 19.42μAmM−1cm−2 and a detection limit of 8×10−4mM for the detection of xanthine. The activation energy (Ea) and the apparent Michaelis–Menten constant (Kmapp) values were found to be 12.30kJmol−1 and 0.38mM, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.