Abstract

The study of cells mechanical properties is of great interest both in medicine and biology to recognize and prevent some diseases causing alterations in cellular behaviour and resistance. Biological micro electro-mechanical systems allow the application of extremely small and precise forces increasing, as a consequence, the number of results possible per experiment and the number of experiments that can be performed simultaneously. The presented work deals with the analysis of an electro-thermally actuated microgripper for single-cell manipulation. Specifications and targets impose several limitations and difficulties in micro manipulators design and these obstacles are even more important when the target of microgripping are biological particles (e.g. living cells). The main parameters that have to be taken into account while designing a cell micromanipulator are, aside from its actuation principle, its kinematics, its fingertips shape, its releasing strategy and its material biocompatibility. More specifically in thermal actuation also thermal stability, insulation and high temperature in the device have to be considered to ensure the cell’s integrity during its micromanipulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call