Abstract

This paper focuses on the design stage of an electrical energy storage system which is intended to be used to level the power required by ships for propulsion when sailing in irregular seas. Particularly, a preliminary analysis has been carried out aimed at choosing, between two storage technologies namely battery and ultracapacitor, the more adequate storage system for the levelling action with respect to the period of the sea waves. A sizing procedure based upon a Hilbert transform decomposition of load demand is used. More specifically, a specified threshold frequency has been identified such that, power fluctuations related to irregular seas which are characterized by frequencies higher than the specified threshold, indicate the ultracapacitor as the more appropriate device for load levelling. For sizing the storage device, the load demand has been decomposed into two signals without overlapping frequencies. An optimal control strategy is proposed, by exploiting the decomposition of the load power, which allows simulating ultracapacitor real-time operation within the previously determined size constraints. Numerical results have been carried out referring to a Ro-Pax ferry powered by an electrical motor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.