Abstract
3-Hydroxyarginine (3-OH-Arg) is an important intermediate for the synthesis of viomycin, an important antibiotic for the clinical treatment of tuberculosis. An efficient strategy for 3-OH-Arg production based on protein engineering and recombinant whole-cell biocatalysis was demonstrated for the first time. To avoid challenging product separation due to the generation of α-ketoglutarate (α-KG) in the system, the molar ratio of the substrates L-Arg and L-Glu was optimized to ensure the efficient production of 3-OH-Arg as well as the complete consumption of α-KG. Through the establishment of a fed-batch process, 3-OH-Arg and succinic acid (SA) production reached to 9.9 g/L and 5.98 g/L after 36 h of reaction under the optimized conditions. This is the highest biosynthetic yield of 3-OH-Arg achieved to date, potentially offering a promising strategy for commercial production of hydroxylated amino acids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.