Abstract

This study presents the combination of N, graphene oxide (GO) and SnO2 as efficient dopants into TiO2 nanofibers (NFs) photoanode substrate for highly efficient dye-sensitized solar cells (DSCs). The developed NFs are synthesized by electrospinning and hydrothermal processes and characterized by FESEM, TEM, XPS, FT-IR, Raman and EDX-studies. The formation of short NFs is confirmed through FESEM and TEM measurements. As the results, the major crystal structure of TiO2 in the prepared NFs has anatase (85.23%) and rutile-structure (14.67%). XPS and EDX studies affirm that the material has Ti, O, Sn, N and C elements. In addition, FT-IR and Raman spectra give an indication about the GO-content. Typically, the DSC based on the novel NFs shows 6.18% efficiency. The Jsc, Voc, FF and Rct are estimated and found to be 10.32mAcm−2, 0.825V, 0.73 and 21.66Ω, respectively. The high-power efficiency is contributed by three reasons. The first one is the high dye-loading (2.16×10−7molcm−2). The second reason is the enhanced charge transfer and decreasing of the electrons/holes recombination through formation of wide band-gap oxide (3.246eV). Finally, the third one is GO-doping which may create new routes for the electron transfer in working electrode layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.