Abstract

This study presents the design of an efficient catalytic converter with increased flow rate and minimum pressure drop using Computational Fluid Dynamics (CFD) techniques. Automobile engines produce undesirable emissions during the combustion process, such as NOx, CO, and unburned hydrocarbons. In addition to these harmful gases, particulate matter, such as lead and soot, is created. As a countermeasure, automobiles are equipped with catalytic converters, which are designed to play a vital role in eradicating emissions. However, due to the catalyst and filler materials found inside the converters, an increase in backpressure develops which leads to an increase in fuel consumption. The gas must pass through a low-porosity substrate to increase the reaction rate, which was simulated using parametric geometry. In this study, parametric simulations of the fluid flow were conducted, utilizing CFD techniques, to determine the optimum parameters that would create a minimal pressure drop while maintaining a high chemical reaction rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call