Abstract

This study is focused on equipping wireless devices (including sensors) with novel, high-efficiency circuitry to harvest and convert ambient radio frequency (RF) power to direct current (dc). Key components of this technology are (a) miniaturised antenna and (b) high-efficiency rectifying circuit. The first is responsible for capturing the RF waves, and the latter converts the RF energy to dc. A major challenge is the design of novel circuitry to generate a battery-like voltage from very low incoming RF energy. Under this study, the authors designed a novel RF power harvesting front-end whose conversion efficiency is significantly improved at low RF power levels (<−20 dBm) as compared to existing technologies. Thus, the new circuitry can harvest ambient and widely available RF energy, making a game changing technology for powering mobile devices. In this study, the authors demonstrate this technology by using it to power a commercially available temperature and humidity meter with an LCD display. The latter is powered using nothing more than ambient WiFi signals in an office environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.