Abstract

A broadband GaN MMIC power amplifier (PA) with compact dimensions of 1.94 × 0.83 mm2 is presented for 5G millimeter-wave communication. To guarantee output capability at the operating band edges where serious performance degradation is likely to occur, the appropriate large-signal matching model and optimal impedance domain need to be carefully determined through load-pull analysis. Broadband matching networks (MNs) in the lowpass form are thereafter developed based on the Chebyshev filter synthesis theory. Using high-pass interstage MN in conjunction with parallel RC lossy circuits to compensate for the transistor’s negative gain roll-off slope ensures a flat frequency response. The input MN is designed as a band-pass filter due to the reactance extracted from the input side of the stabilized device exhibiting series LC resonance characteristics. Measured on-wafer pulsed results for the proposed three-stage PA demonstrate up to 30.9 dBm of output power, more than 28.6 dB of small-signal gain, and a peak power-added efficiency (PAE) of 35.6% at 27 GHz. Both uniform gain and saturated output power (Psat) are achieved across 24–30 GHz with fluctuations of less than 0.8 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call