Abstract

A new material consisting of a water-dispersed complex of polypyrrole-polystyrensulfonate (PPy) embedded in polyacrylamide (PA) has been prepared and tested as enzyme immobilizing system for its use in amperometric biosensors. Glucose oxidase (GOx) and the water-dispersed polypyrrole complex were entrapped within polyacrylamide microgels by polymerization of acrylamide in the dispersed phase of concentrated emulsions containing GOx and PPy. Polymerization of the dispersed phase provides microparticles whose size lies between 3.5 and 7 μm. The aim of incorporating polypyrrole into the polyacrylamide microparticles was to facilitate the direct transfer of the electrons released in the enzymatic reaction from the catalytic site to the platinum electrode surface. The conductivity of the microparticles was measured by a four-point probe method and confirmed by the successful anaerobic detection of glucose by the biosensor. Thus, the polyacrylamide-polypyrrole (PAPPy) microparticles combine the conductivity of polypyrrole and the pore size control of polyacrylamide. The effects of the polyacrylamide-polypyrrole ratio and cross-linking on the biosensor response have been investigated, as well as the influence of analytical parameters such as pH and enzymatic loading. The PAPPy biosensor is free of interferences arising from ascorbic and uric acids, which allows its use for quantitative analysis in human blood serum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.