Abstract
Building integrated photovoltaics (BIPVs) are becoming popular as building elements such as windows, roofs, and outer walls. Because BIPVs have both a construction material function and an electricity generation function, they are a promising alternative to sustainable buildings. This study aims to propose a novel agrivoltaic system design that produces crops underneath photovoltaic (PV) modules. Regarding the fact that crop growth is significantly influenced by shading from PV modules, roof BIPVs with different shading ratios can lead to increased crop productivity. Thus, BIPV design should be investigated based on the performance estimation and feasibility evaluation of different shading ratios in an agrivoltaic system. To this end, electricity generation and crop production models are devised by polynomial regression (PR) based on field experiment data collected from the agrivoltaic system at the Agricultural Research Service Center in Naju-si, South Korea. The experiment shows that a shading ratio of 30% allows for the maximization of the profitability of electricity and soybean production in an agrivoltaic system equipped with BIPVs. As a result, this research will contribute to implementing an agrivoltaic system with various BIPVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.