Abstract

In this study, an adaptive support vector regressor (SVR) controller which has previously been proposed [1] is applied to control the liquid level in a spherical tank system. The variations in the cross sectional area of the tank depending on the liquid level is the main cause of nonlinearity in system. The parameters of the controller are optimized depending on the future behaviour of the system which is approximated via a seperate online SVR model of the system. In order to adjust controller parameters, the “closed-loop margin” which is calculated using the tracking error has been optimized. The performance of the proposed method has been examined by simulations carried out on a nonlinear spherical tank system, and the results reveal that the SVR controller together with SVR model leads to good tracking performance with small modeling, transient state and steady state errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.