Abstract

An adaptive autopilot to control a skid-to-turn missile during its boost phase is designed using the state-dependent Riccati equation (SDRE) method and neural networks (NN). To address the rapid changes in parameters during the boost phase, the translational and rotational motions of the missile are modeled with time-varying velocity and inertial parameters. The autopilot with a two-loop structure is designed to perform integrated roll-pitch-yaw control of the missile with cross-coupled dynamics; each loop has a baseline controller and an adaptive controller. The baseline controller is designed using the SDRE method for reference command tracking in a nominal environment, and the adaptive controller is designed based on NN to manage uncertainty during the boost phase. Stability analysis of the closed-loop system is performed, and the performance of the proposed autopilot is demonstrated by numerical simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.