Abstract

This paper describes the design of an adaptive control system for recording neural signals from tripolar cuff electrodes. The control system is based on an adaptive version of the true-tripole amplifier configuration and was developed to compensate for possible errors in the cuff electrode balance by continuously adjusting the gains of the two differential amplifiers. Thus, in the presence of cuff imbalance, the output signal-to-interference ratio is expected to be significantly increased, in turn reducing the requirement for post-filtering to reasonable levels and resulting in a system which is fully implantable. A realization in 0.8-/spl mu/m CMOS technology is described and simulated and preliminary measured results are presented. Gain control is achieved by means of current-mode feedback and many of the system blocks operate in the current-mode domain. The chip has a core area of 0.4 mm/sup 2/ and dissipates 3 mW from /spl plusmn/ 2.5V power supplies. Measurements indicate that the adaptive control system is expected to be capable of compensating for up to /spl plusmn/5% errors in the tripolar cuff electrode balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.