Abstract

We describe an active memory named SWIM (Structured Wafer-based Intelligent Memory), designed for efficient storage and manipulation of data structures. The key architectural idea in SWIM is to put some processing logic inside each memory chip that allows it to perform data manipulation operations locally and to interact with a disk or a communication line through a backend port. A network or I/O subsystem is built using an interconnected ensemble of such memory logic pairs. A complex network processing task can now be distributed between a large number of small memory processors each doing a sub-task, while still retaining a transparent memory interface. We argue that active memory based processing enables more powerful, scalable and robust designs for storage and communications subsystems, that can support emerging network services, multimedia workstations and wireless PCS systems. A complete parallel hardware and software system constructed using an array of SWIM elements has been operational for over a year. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.