Abstract
The present work demonstrates a genetic algorithm approach to optimizing the effective material parameters of an acoustic metamaterial. The target device is an acoustic gradient index (GRIN) lens in air, which ideally possesses a maximized index of refraction, minimized frequency dependence of the material properties, and minimized acoustic impedance mismatch. Applying this algorithm results in complex designs with certain common features, and effective material properties that are better than those present in previous designs. After modifying the optimized unit cell designs to make them suitable for fabrication, a two-dimensional lens was built and experimentally tested. Its performance was in good agreement with simulations. Overall, the optimization approach was able to improve the refractive index but at the cost of increased frequency dependence. The optimal solutions found by the algorithm provide a numerical description of how the material parameters compete with one another and thus describes the level of performance achievable in the GRIN lens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.