Abstract

In this paper, a novel plasmonic all-optical half-subtractor and full-subtractor are designed for optical computing. The structure of plasmonic subtractors consists of a metal–insulator–metal (MIM) waveguide and rectangular ring resonators covered by a graphene layer. Due to the nonlinear optical properties of graphene, the states of the plasmonic resonators can be controlled by the pump intensity of a pump beam focused on the graphene layer. The resonators can work as all-optical switches with an ultra-fast response time to constitute optical logic devices according to the directed logic mechanism. A finite-difference time-domain method is utilized to numerically investigate the transmission of the output signals which represent the results of subtraction operations. Simulation results obtained indicate that the proposed plasmonic devices have the ability to implement half-subtraction and full-subtraction with a small feature size and fast response time, and provide a new concept and method for the design and realization of optical computing devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call