Abstract
On-board hydrogen production from the hydrolysis of Al in alkaline water has received great attention because it eliminates the need for hydrogen storage. The Al powder, though providing high reaction rate in the hydrolysis, causes a serious problem of explosive danger when in contact with air or moisture, etc. Since the hydrogen generation rate increases linearly with the corrosion rate of Al to Al3+, an Al–Fe alloy, in which an electrochemically noble Al3Fe phase precipitates along grain boundaries, is designed, and hence causes fast hydrogen generation from the hydrolysis of Al in alkaline water by combined action of galvanic and intergranular corrosion. The Al alloy containing 1 wt% Fe increases the hydrogen generation rate 3.7 times compared with that of pure Al, in which 65% of the increase is due primarily to the galvanic corrosion between Al and Al3Fe phase, and 35% due to the increase in reaction area by intergranular corrosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.