Abstract
Conventional reconnaissance camera systems have been flown on manned aircraft, where the weight, size, and power requirements are not stringent. However, today, these parameters are important for unmanned aerial vehicles (UAVs). This article provides a solution to the design of airborne large aperture infrared optical systems, based on a monocentric lens that can meet the strict criteria of aerial reconnaissance UAVs for a wide field of view (FOV) and lightness of airborne electro-optical pod cameras. A monocentric lens has a curved image plane, consisting of an array of microsensors, which can provide an image with 368 megapixels over a 100° FOV. We obtained the initial structure of a five-glass (5GS) asymmetric monocentric lens with an air gap, using ray-tracing and global optimization algorithms. According to the design results, the ground sampling distance (GSD) of the system is 0.33 m at 3000 m altitude. The full-field modulation transfer function (MTF) value of the system is more than 0.4 at a Nyquist frequency of 70 lp/mm. We present a primary thermal control method, and the image quality was steady throughout the operating temperature range. This compactness and simple structure fulfill the needs of uncrewed airborne lenses. This work may facilitate the practical application of monocentric lens in UAVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.