Abstract
AbstractThe pylon is an essential part of lower limb prosthetics. It is usually made of titanium, aluminum, and steel. However, it is expensive and difficult to be available in developing countries, especially for children who suffer from amputation. Moreover, they constantly need new pylon pieces during close periods due to the growth and increase in the child's length.PurposeThis study aims to design an adjustable pylon that can change in length to suit the increase in the length of the healthy leg of the child without the need for a new pylon and reduce the economic cost.Design/methodology/approachIn this study, an adjustable pylon model was designed using the CAD software (Solid work) and work to manufacture the pylon from low-cost materials (carbon fiber filament) capable of bearing the amputee's weight, and manufacturing printed parts by using additive manufacturing technical (CREALITY CR20 3D printer).FindingsThe results showed that the pylon is successful in design and strength as it bears the patient's weight without any failure or buckling, and the proof that the maximum amount of stress generated is 27.8 MPa, which is far from the value of the yield stress.Originality/valueThe design of the adjustable pylon prototype offers good strength and ability to bear the patient weight, reducing the cost and time of manufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Review of Applied Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.