Abstract
ObjectivesProsthetic socket is the contact interface between the stump and the prosthesis, and also the interface component that transmits forces from the stump to the prosthesis distal. The current prosthetic socket fit is a major factor affecting rehabilitation, especially with the stump volume fluctuations. The main goal of this article is to design an adjustable frame-type prosthetic socket with constant force to adapt to the stump volume fluctuations. Materials and methodsIn this paper, an adjustable frame-type prosthetic socket with constant force is designed. The constant force device is designed based on the superelasticity of the shape memory alloy for maintaining constant stump-socket interface stress and automatically adapting to certain volume fluctuations. The constant force extrusion performance of this prosthetic socket was verified and optimized by finite element analysis. ResultsThe results suggest that the constant force unit may maintain constant interface stress. According to the optimization results, the shape memory alloy dimensional parameters could be selected according to different requirements. ConclusionThe adjustable frame-type prosthetic socket allows the user to adjust the socket volume through the cable system and has a large heat dissipation area. The constant force unit maintains constant interface stress and automatically adapts to stump volume fluctuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.