Abstract

To decrease the switching loss and the dead-time effect of resonant half-bridge inverter, a novel adaptive dead-time control circuit of resonant half-bridge driver Integrated Circuit (IC) is presented. Without increasing the pin number of IC, this circuit takes a novel strategy to adaptively regulate dead time to a temperate range between high and low thresholds. The high and low thresholds are adaptive to the fall time of output signal in a half-bridge clock cycle. The IC of the designed circuit is suitable for high-voltage applications. The dead-time regulation range of this circuit achieves 0–3.5 µs. The range of temperate dead-time state is 300 ns. The failure signal of this circuit can protect the IC and peripheral power devices by regulating operation in three clock cycles. Both simulation and measurement of the proposed circuit in a half-bridge driver IC with an operating frequency at 50 kHz are presented based on the 0.5 µm 700 V BCD process. The results of simulation and measurement show that the presented circuits’ performance is perfect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call