Abstract

The use of space technology and small space loads is increasingly common. To address this, a mechanism for isolation vibration in small optical load has been proposed. The mechanism includes a coarse and fine stage parallel pointing platform (CFPP). This paper investigates an active vibration isolation scheme for the novel pointing stabilization mechanism. The kinetic energy minimization principle is derived from the analysis of its working mechanism and dynamic feedforward characteristics. This principle is confirmed by the feedforward of the indeterminate degrees of freedom of the under-constrained mechanism. A hybrid control scheme of feedback and feedforward is developed based on the H∞ algorithm and the optimal feedforward control algorithm. Simulation and experimentation have proven that the vibration isolation efficiency of more than 20 dB can be achieved in all three axis rotation directions. This meets the precision pointing requirements of small optical load effectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.