Abstract

The Internet architecture is a packet switching technology that allows dynamic sharing of bandwidth among different flows with in an IP network. Packets are stored and forwarded from one node to the next until reaching their destination. Major issues in this integration are congestion control and how to meet different quality of service requirements associated with various services. In other words streaming media quality degrades with increased packet delay and jitter caused by network congestion. To mitigate the impact of network congestion, various techniques have been used to improve multimedia quality and one of those techniques is Active Queue Management (AQM). Access routers require a buffer to hold packets during times of congestion. A large buffer can absorb the bursty arrivals, and this tends to increase the link utilizations but results in higher queuing delays. Traffic burstiness has a considerable negative impact on network performance. AQM is now considered an effective congestion control mechanism for enhancing transport protocol performance over wireless links. In order to have good link utilization, it is necessary for queues to adapt to varying traffic loads. This paper considers a particular scheme which is called Adaptive AQM (AAQM) and studies its performance in the presence of feedback delays and its ability to maintain a small queue length as well as its robustness in the presence of traffic burstiness. The paper also presents a method based on the well-known Markov Modulated Poisson Process (MPP) to capture traffic burstiness and buffer occupancy. To demonstrate the generality of the presented method, an analytic model is described and verified by extensive simulations of different adaptive AQM algorithms. The analysis and simulations show that AAQM outperforms the other AQMs with respect to responsiveness and robustness.

Highlights

  • Proposals to handle differentiated and guaranteed services in the Internet have not provided the expected benefits for both users and operators

  • In this paper we have presented a method to solve the Markov Modulated Poisson Process (MMPP)-8 process that is utilized for the modeling of video, multimedia, web and ftp sources

  • We have developed an analytical model of average packet delay and packet loss probability of Active Queue Management (AQM) congestion control mechanisms

Read more

Summary

Introduction

Proposals to handle differentiated and guaranteed services in the Internet have not provided the expected benefits for both users and operators. With a large number of interconnected networks, is difficult to handle in an efficient way. This is due to the resource heterogeneity in terms of technologies and the inconsistent implementation of quality of services (QoS) in different networks. A Generation Network is an advanced, packet-based network that exploits multiple broadband QoS enabling transport technologies to provide communication services. The objective of Generation Network is to focus on users and those service-related functions that are independent of underlying transportrelated technologies. With the advent of Generation Network, services that are currently provided by multiple specific network-centric architectures are migrated toward a single, converged, user-centric communication network

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.