Abstract

A design methodology for synthesis of active N-path bandpass filters is introduced. Based on this methodology, a 0.1-to-1.2 GHz tunable 6th-order N-path channel-select filter in 65 nm LP CMOS is introduced. It is based on coupling N-path filters with gyrators, achieving a “flat” passband shape and high out-of-band linearity. A Miller compensation method is utilized to considerably improve the passband shape of the filter. The filter has 2.8 dB NF, +25 dB gain, +26 dBm wideband IIP <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ( MHz), an out-of-band 1 dB blocker compression point B <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1dB,CP</sub> of +7 dBm (Δf = +50 MHz) and 59 dB stopband rejection. The analog and digital part of the filter draw 11.7 mA and 3-36 mA from 1.2 V, respectively. The LO leakage to the input port of the filter is ≤-64 dBm at a clock frequency of 1 GHz. The proposed filter only consists of inverters, switches and capacitors and therefore it is friendly with process scaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.