Abstract
This work introduces a new way to control hydraulic cylinder velocity using an inlet metering pump system to control the hydraulic flow entering the cylinder. The inlet metering system consists of a fixed displacement pump and an inlet metering valve that adjusts the hydraulic fluid flow entering the pump as required. The energy losses associated with flow metering in the system are reduced because the pressure drop across the inlet metering valve can be arbitrarily small. The fluid is supplied to the inlet metering valve at a fixed pressure using a charge pump. A velocity control system is designed using the inlet metering system as means to control the fluid flow to a hydraulic cylinder. In addition to the inlet metering system, the velocity control system designed in this work includes a four-way directional valve to set the fluid flow direction according to the desired direction of the hydraulic cylinder velocity. Open-loop and closed-loop proportional and proportional derivative (P and PD) controllers are designed. Designs with the goals of stability and performance of the system are studied so that a precise and smooth velocity control system for the hydraulic cylinder is achieved. In addition to potentially high efficiency of this system, there is potential for other benefits including low cost, fast response, and less complicated dynamics compared to other systems. The results presented in this work show that the inlet metering velocity control system can be designed so that the system is stable, there is zero overshoot and no oscillation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.