Abstract
Uniform bias magnetic field is very important for giant magnetostrictive actuators (GMA) to fully utilize the performance of giant magnetostrictive materials (GMM). However, it is difficult to keep it uniform when the length to diameter ratio (α) of the GMM is larger than 3.5, though the shapes of the applied GMM are different with α usually larger than 3.5. In this paper, a design method with triple-ring permanent magnets is established to provide an even bias magnetic field for GMM with varying α. Firstly, the magnetic circuit model is set up. According to the analysis of the field distribution along the GMM rod, the main factor causing unevenness of the bias magnetic field is confirmed to be the inner leakage flux. A design of triple-ring topology for the magnets is developed to control the inner leakage flux to reduce the unevenness. Then, finite element analysis is adopted to optimize a design which can ensure an unevenness of the bias magnetic field of less than 3% while the α of a GMM rod is up to 20. Finally, an actual GMA is fabricated with the GMM dimension of ∅10 mm × 50 mm (α = 5), and the testing results show that the unevenness of the bias field along the GMM is 1.38%. The bias magnetic system design is practicable, simple and efficient for offering an even bias magnetic field when α lies in a wide range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.