Abstract

The design of a two-element antenna array using the substrate integrated waveguide (SIW) technique and operating at 10 GHz is presented. The proposed antenna array consists of two SIW phase shifter sections with two SIW slot antennas. The phase shifting is achieved by changing the position of two inductive posts inserted inside each element of the array. Numerical simulations and experimental measurements have been carried out for three differential phases between the two antenna array elements, namely, 0°, 22.5°, and 67.5°. A prototype for each differential phase has been fabricated and measured. Results have shown a fairly good agreement between theory and experiments. In fact, a reflection coefficient of better than 20 dB has been achieved around 10 GHZ. The E-plane radiation pattern has shown a beam scan between 5° and 18° and demonstrated the feasibility of designing an SIW antenna phased array.

Highlights

  • The radiation patterns of many antennas such as the dipole, loop, and microstrip patch have a fairly wide beam width, making them suitable candidates for applications requiring a broad coverage area

  • Moderate gains (10–15 dB) can be achieved by long helical antennas, but they cannot achieve very high gains, due to the impractical length required. Another antenna which can produce relatively high gain is the waveguide horn, which is an extension of an open waveguide with flared walls at the open end

  • Waveguide horns are useful at higher frequencies (>5 GHz) where their size and weight become manageable [1]

Read more

Summary

Research Article

Design of a Two-Element Antenna Array Using Substrate Integrated Waveguide Technique. The design of a two-element antenna array using the substrate integrated waveguide (SIW) technique and operating at 10 GHz is presented. The proposed antenna array consists of two SIW phase shifter sections with two SIW slot antennas. The phase shifting is achieved by changing the position of two inductive posts inserted inside each element of the array. Numerical simulations and experimental measurements have been carried out for three differential phases between the two antenna array elements, namely, 0◦, 22.5◦, and 67.5◦. A prototype for each differential phase has been fabricated and measured. The E-plane radiation pattern has shown a beam scan between 5◦ and 18◦ and demonstrated the feasibility of designing an SIW antenna phased array

Introduction
Simulated Measured
We considered
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.