Abstract

Field testing is a critical step to improve our knowledge on in situ-trapping mechanisms of CO2 injected in geological formations and their relative importance. In this study, we present a two-well test sequence aimed at quantifying field values of both residual and dissolution trapping of CO2. Then, we apply it to the Heletz experimental CO2 injection site, using numerical modelling. The sequence includes a hydraulic test to measure residual scCO2 saturation and a novel tracer technique, together with measurements of abstracted fluid compositions for quantification of the rate of CO2 dissolution in the reservoir. The proposed tracer technique uses a tracer with negligible aqueous solubility, which is injected with the scCO2 and enriched in the scCO2 phase as CO2 dissolves. We show that this tracer can provide direct information about the dissolution of mobile scCO2. We also show that the rate of abstracted dissolved CO2 can be used to predict the total rate of CO2 dissolution, provided that the amount of dissolved CO2 in the formation stabilizes, and that this can be achieved with the proposed abstraction scheme. We conclude that the combination of these measurements is a promising tool for detailed field-scale characterization of residual and dissolution trapping processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.